class
Profitez de 15% de réduction sur votre première commande ! Code promo: BIENVENUE

data mining et statistique décisionnelle : la science des données (5e édition)

Stéphane Tufféry (Auteur)
Note moyenne:

Résumé

Le data mining et la data science sont de plus en plus répandus dans les entreprises et les organisations soucieuses d'extraire l'information pertinente de leurs bases de données, qu'elles peuvent utiliser pour expliquer et prévoir les phénomènes qui les concernent (risques, production, consommation, fidélisation...).
Cette cinquième édition, actualisée et augmentée de 90 pages, fait le point sur le data mining, ses méthodes, ses outils et ses applications, qui vont du scoring jusqu'au text mining, objet d'un chapitre complètement remanié. Nombre de ses outils appartiennent à ... Lire la suite
891,00 DH
En stock
Livrable dans 2 à 3 jours

Biographie

Stéphane TUFFÉRY est responsable des études statistiques dans un grand groupe bancaire. Il intervient à l'Institut des Actuaires et il est Maître de Conférences associé à l'Université de Rennes 1, où il enseigne le

data mining, l'apprentissage profond et les méthodes de Big Data. Il a publié dans la même collection Data Mining et statistique décisionnelle (5 e édition), qui a été traduit en anglais, et Modélisation prédictive et

apprentissage statistique avec R (2 e édition).

Caractéristiques

Caractéristiques
Date Parution14/10/2017
CollectionStatistiques
EAN9782710811800
Nb. de Pages934
Caractéristiques
EditeurTechnip
Poids1555 g
PrésentationGrand format
Dimensions24,0 cm x 17,0 cm x 4,8 cm
Détail

Le data mining et la data science sont de plus en plus répandus dans les entreprises et les organisations soucieuses d'extraire l'information pertinente de leurs bases de données, qu'elles peuvent utiliser pour expliquer et prévoir les phénomènes qui les concernent (risques, production, consommation, fidélisation...).
Cette cinquième édition, actualisée et augmentée de 90 pages, fait le point sur le data mining, ses méthodes, ses outils et ses applications, qui vont du scoring jusqu'au text mining, objet d'un chapitre complètement remanié. Nombre de ses outils appartiennent à l'analyse des données et à la statistique « classiques » (analyse factorielle, classification automatique, analyse discriminante, régression logistique, modèles linéaires généralisés, régression pénalisée, régression clusterwise...) mais certains sont plus spécifiques au data mining, comme les réseaux de neurones, les algorithmes génétiques, les SVM, les arbres de décision, les forêts aléatoires, le boosting et la détection des règles d'associations. Les avancées les plus récentes du machine learning et les applications les plus actuelles des Big Data sont présentées, qui vont des algorithmes de reconnaissance d'image aux méthodes de plongement de mots en text mining. Les chapitres sur les réseaux de neurones et les SVM sont illustrés par la reconnaissance de l'écriture manuscrite.
Ces outils sont disponibles dans des logiciels de plus en plus puissants et complets, à commencer par le logiciel libre R, que nous comparons en détail aux logiciels SAS et IBM SPSS dans un chapitre spécifique. Ces logiciels sont utilisés pour illustrer par des exemples précis les explications théoriques données.
Les aspects méthodologiques vont de la conduite des projets jusqu'aux facteurs de réussite et aux pièges à éviter, en passant par l'évaluation et la comparaison des modèles, leur intégration dans les processus opérationnels. Un chapitre est consacré à une étude de cas complète de credit scoring, de l'exploration des données jusqu'à l'élaboration de la grille de score.
Avis libraires et clients

Note moyenne
0 notes
Donner une note